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Abstract This chapter introduces COM-Ear, a deep constellation model for ear
recognition. Different from competing solutions, COM-Ear encodes global as well
as local characteristics of ear images and generates descriptive ear representations
that ensure competitive recognition performance. The model is designed as dual-
path convolutional neural network (CNN), where one path processes the input in a
holistic manner, and the second captures local images characteristics from image
patches sampled from the input image. A novel pooling operation, called patch-
relevant-information pooling, is also proposed and integrated into the COM-Ear
model. The pooling operation helps to select features from the input patches that
are locally important and to focus the attention of the network to image regions that
are descriptive and important for representation purposes. The model is trained in
an end-to-end manner using a combined cross-entropy and center loss. Extensive
experiments on the recently introduced Extended Annotated Web Ears (AWEx)
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dataset demonstrate the competitiveness of COM-Ear compared to existing ear
recognition models.

Key words: Ear biometrics, Ear recognition, Part-based models, Constellation
model, Convolutional neural networks.

1 Introduction

Ear recognition refers to the task of recognizing people from ear images using com-
puter vision techniques. Ears offer appealing characteristics when used in automated
recognition systems, such as the ability to distinguish identical twins [48], the poten-
tial to supplement other biometric modalities (e.g., faces) [65, 72] or the ability to
capture images from a distance and without explicit cooperation of the subjects one
is trying to recognize.

Person recognition based on ear images has seen steady rise of popularity over
recent years. Nevertheless, despite significant advancements in this area and the
shift towards deep-learning-based models, nuisance factors such as ear occlusions
and the presence of ear accessories still adversely affect performance of existing
recognition models. Moreover, while research on ear recognition has long been
focused on recognition problems in controlled imaging conditions, the recent switch
to unconstrained image acquisition conditions brought about new challenges related
to extreme appearance variability caused by blur, illumination, and view-direction
changes, which were thus far not considered problematic for ear recognition. These
extreme conditions pose considerable challenges to existing ear recognition models
and have so far not been addressed properly in the literature.

Existing approaches to address the challenges encountered in unconstrained imag-
ing conditions focused mostly on fine-tuning existing deep learning models. In a
recent competition, organized around the problem of unconstrained ear recogni-
tion [28], for example, most participants used established models, such as VGG-16
or Inception-ResNets pretrained on ImageNet data as a baseline and then fine-tuned
the models on the training data of the competition. Other recent deep learning so-
lutions [5, 23, 34, 52, 77] in this area also followed a similar approach and used
pre-existing models or employed transfer learning and domain adaptation techniques
to adapt the models for ear recognition. A common aspect of these works is the fact,
the model were not designed specifically for ear recognition and processed ear im-
ages holistically ignoring the particularities and existing problems of ear recognition
technology.

In this chapter, we take a step further and present a novel (deep) constellation
model for ear recognition (COM-Ear) that addresses some of the problems seen
with competing ear recognition approaches. As we show in the experimental section
the model ensures state-of-the-art recognition performance for unconstrained ear
recognition and exhibits a significant increase in robustness to the presence of partial
ear occlusions (typically caused by ear accessories) compared to other techniques in
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this area. The proposed COM-Ear model is designed around a Siamese architecture
that takes an ear image and local image patches (sampled from a fixed grid) as
input and generates an image representation that encodes both global and local ear
characteristics at the output. To generate the output image representation features
from different patches are first combined using a newly proposed pooling operation,
called patch-relevant-information pooling (or PRI-pooling), and then concatenated
with the global images features. Our constellation model is not limited to specific
model topologies and can be built around any recent deep-learning model. We, hence,
evaluate and analyze different backbone models (i.e., ResNet18, ResNet50 and
ResNet152) for the implementation of COM-Ear. We train the proposed constellation
model end-to-end using a combination of cross-entropy and center losses as our
learning objectives. To the best of our knowledge, this is the first attempt at designing
and training constellation deep model in the field of ear recognition.

We evaluate the model in rigorous experiments on the challenging Extended
Annotated Web Ears (AWEx) dataset [28, 29]. To demonstrate the robustness of
the COM-Ear model to ear accessories and occlusions, we perform additional ex-
periments using an artificially generated dataset [24] of images where accessories
are added to the ear images. The results of our experiments show that the proposed
COM-Ear model is a viable solution for the problem of ear recognition that ensures
state-of-the-art performance and exhibits a considerable level of robustness to various
factors adversely affecting the recognition accuracy of competing approaches.

To summarize, the main contributions of this chapter are the following:

• We present and describe COM-Ear, the first ever deep constellation model for
the problem of ear recognition that ensures state-of-the-art performance on the
most challenging dataset of ear image available.

• We introduce a novel pooling operation, called patch-relevant-information pool-
ing (or PRI-pooling) that is able to select features from image patches that are
locally important and integrate it into the COM-Ear model.

• We make all code, models, and trained weights publicly available via http:
//ears.fri.uni-lj.si and provide a strong baseline for future research
in the field of unconstrained ear recognition.

The rest of the paper is structured as follows. In Section 2 we present the back-
ground and related work. Here, we discuss techniques for ear recognition in con-
strained setting as well as methods focusing on ear recognition in the wild. In
Section 3 we describe the proposed constellation model in detail and elaborate on
the idea behind the model, its architecture, and training procedure. In Section 4 we
present a rigorous experimental evaluation of COM-Ear and discuss results. We
also present a qualitative analysis to highlight the characteristics of our model. We
conclude the chapter in Section 5 with some final remarks and direction for future
work.

http://ears.fri.uni-lj.si
http://ears.fri.uni-lj.si
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2 Related Work

The literature on automated ear recognition is extensive, starting with the early
geometry-based recognition techniques to more recent deep learning model. The
field has also seen a shift recently away from ear datasets from constrained environ-
ments towards unconstrained settings, which more closely reflect real-world imaging
conditions. In this section we briefly survey the most important work in the field to
provide the necessary context for our contributions. For a more complete coverage
of ear recognition technology, the reader is referred to some recent surveys [29, 55]

2.1 Ear Recognition in Constrained Conditions

Until recently, most of the research on ear recognition was focused on controlled
imaging conditions where the appearance variability of ear images was carefully con-
trolled and typically limited to small head rotations and minute changes in the external
lighting conditions [29]. Techniques for ear recognition (from 2D color/intensity
images) proposed in the literature during this period can conveniently be grouped
into the following categories: [29, 55]: i) geometric approaches, ii) global (holistic)
approaches, iii) local (descriptor-based) approaches, and iv) hybrid approaches.

Geometric approaches dominated the early days of ear recognition [2, 29] and
were often aided by manual intervention. Techniques from this group rely on certain
geometric properties of ears and exploit relationships between predefined parts
of ears. The first fully automated ear recognition procedure exploiting geometric
characteristics was presented by Moreno et al. [?] and made use of ear geometric
description and a compression network. Some other examples of geometric ear
recognition include [11, 15, 16, 46, 59]. One of the more recent publications using a
geometric approach is the work of Chowdhury et al. [18]. Here, the authors present a
complete recognition pipeline including an Adaboost-based ear detection technique.
The Canny edge detector is employed to extract edge features from images and ear
comparisons are done using similarity measurements.

The second group of ear recognition approaches, global (also referred to as
holistic) techniques, exploit the global appearance of the ear and encode the ear
structure in a holistic manner. Even though techniques from this group seems to
represent an obvious way to tackle ear recognition and improve upon the geometric
methods, they are relatively sensitive to variations in illumination, pose or presence
of occlusions. Some of the earliest examples of global approaches include the work
from Hurley et al. [37] that relied on the Force Field Transform to encode ear images,
methods using Principal Component Analysis [14,67] and others [1,3,8,47,71,74,76].

The third group of approaches, local techniques, extracts information from local
image areas and use the extracted information for identity inference. As emphasized
in the survey by Emersic et al. [29], two groups of techniques can in general be
considered local-based: techniques that first detect interest points in the image and
then compute descriptors for the detected interest points, and techniques that compute
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descriptors densely over the entire images based on a sliding window approach. Ex-
amples of techniques from the first group include [7,12,58]. A common characteristic
of these techniques is the description of the interest points independently one from
another, which makes it possible to design matching techniques with robustness to
partial occlusions of the ear area. Examples of techniques from the second group
include [6, 9, 13, 17, 39, 42, 69]. These techniques also capture the global properties
of the ear in addition to the local characteristics, which commonly result in higher
recognition performance, but the dense descriptor-computation procedure comes at
the expense of the robustness to partial occlusions. Nonetheless, trends in ear recogni-
tion favored dense descriptor-based techniques primarily due to their computational
simplicity and high recognition performance.

The last group of ear recognition approaches, hybrid methods, typically describe
the input images using both, global as well as local information. Techniques from
this group first represent ear images using some local (hand-crafted) image descriptor
(e.g., SIFT, BSIF or HOG) that captures local image properties and then encode the
extracted descriptor using a global (holistic) subspace projection technique, such as
Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) or other
related techniques [55]. Hybrid approaches and (powerful) local-descriptor-based
methods represented the state-of-the-art in ear recognition for a considerable period
of time and were only recently outperformed by deep learning based models [25, 28].
The model introduced in this chapter builds on these techniques and similar to hybrid
methods also tries to capture global ear characteristics as well as local ear details. In
this sense it is related to hybrid techniques from the literature, but offers significant
performance improvements as evidenced by the results presented in Section 4.

In addition to the ear recognition approaches described above, some works focus
on solving specific issues regarding ear recognition, such as occlusions or align-
ment [54, 60, 61, 68, 75, 78, 79]. Furthermore, existing research related to ear recogni-
tion also studies multi-modal biometrics systems that incorporate ear images into
the recognition procedure [4, 31, 53], different data-acquisition techniques, such as
light-field cameras [62] or other ways of ear-based recognition that do not rely on
visual information [45].

2.2 Ear Recognition in Unconstrained Conditions

More recent work on ear recognition is increasingly looking at unconstrained image
acquisition conditions, where the appearance variability of ear images is considerably
greater from what is seen in constrained settings. Several ear datasets for research in
ear recognition have been proposed towards such unconstrained scenarios, starting
with the Annotated Web Ears (AWE) [29], The Unconstrained Ear Recognition
Challenge (UERC) dataset [28] and others. Research on these datasets is dominated
by deep learning models based primarily on convolutional neural networks (CNNs),
while techniques using local, hand-crafted descriptors are far and few between.
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Numerous deep learning models have been presented for ear recognition over
the course of the last two years [23, 28, 30, 34, 52, 64, 66, 77], all significantly out-
performing local-descriptor-based and hybrid methods in the most challenging sce-
narios [26–28, 66]. One of the earliest approaches to ear recognition using deep
neural used aggressive data augmentation to suffice the training needs [27]. Another
example of one of the earliest uses of deep learning was presented by Galdámez et
al. [32]. Here, the authors used a Haar-based detection procedure, but used a CNN
for recognition. Another work using deep neural networks to facilitate ear recogni-
tion was presented by Tian and Mu [66]. However, the authors focused on datasets
captured in the constrained environments and did not evaluate the performance of
their model on more recent datasets captured in unconstrained conditions. The work
of Eyiokur et al. [30] introduced an new (constrained) dataset of ear images, which
was used to train AlexNet, VGG and LeNet for ear recognition. The models were
later fine-tuned on the UERC data and tested in unconstrained conditions. Another
work of using AlexNet for ear recognition includes [5]. Dodge et al. [23] developed a
deep neural networks for ear recognition and tested their model on the unconstrained
AWE and CVLE datasets. In the work of Ying et al. [73] a shallow CNN architecture
was presented, but the ear dataset used for testing was not described. In the work of
Zhang et al. [77] the authors presented a new dataset of ear video sequences captured
with a mobile phone. For recognition the authors used the fully convolutional SPPNet
(Spatial Pyramid Pooling Network) capable of accepting variable sized input images.

In this chapter we build on the outlined body of work and introduce a novel deep-
learning model for ear recognition in unconstrained conditions. Similar to existing
work our model relies on a CNN to learn an descriptive representation of ear images,
but unlike competing solutions does not capture only global information, but also
local image cues that may be important for recognition purposes. Moreover, due
to the design of the model, the amount of local information that is added to the
computed ear representation is adaptively added to the learned descriptor depending
on the given content of the input images.

3 COM-Ear: A Deep Constellation Model for Ear Recognition

In this section we present the general structure and the idea behind our (deep) constel-
lation model for ear recognition (COM-Ear). COM-Ear represents, to the best of our
knowledge, the first part-based deep learning model for ear recognition. Compared
to competing deep learning models, which process images in a holistic manner,
COM-Ear also takes into account local image information and combines it with
holistic features, which (as we show in the experimental section) improves robustness
to occlusions and results in state-of-the-art results on established benchmarks.
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3.1 Motivation

Deep learning models, and particularly convolutional neural networks (CNNs), which
learn discriminative image representations from the whole input image have recently
achieved great results in all areas of biometrics, including ear recognition [27].
However, global methods that process input images as a whole are in general sensitive
to illumination changes, occlusions, pose variations and other factors typically present
in unconstrained real-world environments. Local methods that extract discriminative
information from local image regions, on the other hand, are by typically more robust
to occlusions and related nuisance factors and represent a viable alternative to global
approaches.

CNNs are by design global in nature, but with their hierarchical design and char-
acteristics, such as convolutional kernels with local connectivity, high dimensionality
and non-linearity, are also capable of encoding local discriminative information
exceptionally well. However, because of the nature of operations in CNNs, this local
information is aggregated and propagated along the model layers and the amount of
local information that is preserved is limited to the most discriminative parts of the
input. In unconstrained setting different parts of the input might be occluded, differ-
ently illuminated and especially in the case of ear recognition, different accessories
might be present on different parts of the ear which greatly affects the performance
of such methods. With COM-Ear we try to address these issues and present a deep
model with the following characteristics:

• Aggregation of global and local information: We design our model to follow
the approach of hybrid techniques, which were popular before the era of deep
learning and utilized both global and local information. Compared to traditional
hybrid approaches, we design COM-Ear in a fully convolutional way such that
both, global and local information is captured by a single CNN model, resulting
in a highly descriptive and discriminative image representation that can be used
for identity inference.

• Selective attention to image parts: Local features are combined in a novel way
which gives the model the capability to focus it’s attention on locally important
discriminative parts. The proposed model also offers a straight-forward way of
exploring the importance of each image part which contributes towards high
explainability of the proposed model.

• Robustness to occlusions: Our method is designed to specifically address issues
known to be problematic for ear recognition. Specifically, it offers a natural way
of decreasing sensitivity to partial occlusions of the ear that are typically caused
by the presence of ear accessories.
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3.2 Overview of COM-Ear

The architecture of the COM-Ear model is presented in Fig. 1. The model is designed
as a dual-path architecture, where the first path (marked 1) in Fig. 1) encodes global
information about the ear appearance and the second path (marked 2) in in Fig. 1)
captures local image cues to supplement the information extracted from the global
processing path. For both paths a CNN-based feature extractor is used as the backbone
model. Below we describe all parts of the model in detail.

Fig. 1: Overview of the proposed Deep Constellation Model for Ear Recognition
(COM-Ear). The model is designed as a two-path architecture. First path, denoted
by 1) represents the global processing path that encodes the input image at a holistic
level using a backbone CNN-based feature extractor denoted by 1b). The second
path, denoted by 2) represents the local patch-based processing path which extracts
features from local image patches via the backbone CNN, denoted by 2b). Local
features are then combined with the PRI-Pooling operator, denoted by 2c). Global
and local features are concatenated in 3) and used in the fully connected layers 4)
and 5) to predict outputs and to compute losses during training.

3.2.1 The Global Processing Path

The input to the global processing path (1) is the whole ear image (1a) as shown in
Fig. 1. From this input, a feature representation is computed using a backbone CNN
(1b). While different models could be used for this task, we select different ResNet
incarnations (ResNet-18, ResNet-50, ResNet-152) [35] because of their state-of-the-
art performance in many vision tasks and the fact that open source implementations
are readily available. To make full use of the ResNet models, d-dimensional features
are taken from the last pooling layer of the models and the pooling operation is
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replaced by adaptive pooling to make the model applicable to differently sized input
images.

3.2.2 The Local Processing Path

For the second processing path (2), the input image is first split into N smaller
patches (2a). The patches are then fed to the COM-Ear model for processing. The
local processing path is designed as a parallel Siamese architecture (2b) with shared
model parameters and the same backbone feature extractor as used in the global
processing path (1b). Feature representations are extracted from each of the patches
and aggregated using max-pooling with kernel size of 1 (i.e. max operation along
patch dimension) (2c). We decided for a Siamese architecture to reduce the number
of parameters that need to be learned during training and to decrease the possibility
of over-fitting. With our scalable design we are able to exploit information from a
variable number of input patches with no influence on the number of parameters and
without changes to the network topology.

To aggregate information from the local features we use a novel pooling procedure
we refer to patch-relevant-information pooling or PRI-pooling for short. The idea
behind PRI-pooling is to use only the most relevant information from the local
image patches in the final image representation. For the proposed pooling procedure,
every patch is first passed through the Siamese CNN ensemble to get a set of N
corresponding d-dimensional feature representations - similar to TI-Pooling [43].
A max pooling operation is then applied on the N feature vectors along the patch
dimension to generate the final aggregated d-dimensional feature representation for
the local processing path.

PRI-pooling is applied on the feature vector in order to obtain features that are
locally important. We argue that with patches as an input to the PRI-pooling topology
the features learned capture local information that is relevant and may supplement the
global features produced by the global processing path of the COM-Ear model. With
this approach the network can automatically infer, which parts of the input image
are important and, vice versa, these regions can be identified from the composition
of the final aggregated feature vector produced by the local processing path. Thus,
the PRI-pooling operation gives our COM-Ear model as a level of explainability not
available with purely holistic competitors. We provide a few qualitative examples of
this explainability in the experimental section.

3.2.3 Combining Information

Global and local features are combined in the final part of the COM-Ear model by
simple concatenation. Given that the feature representation from each model path
is d-dimensional the combined feature representation comprises 2d elements. As
we show in the experimental section, both types of features are important for the
performance of the COM-Ear model, as with holistic features or local features alone
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we are not able to match the performance of the combined representation. Especially,
the performance of the local features is observed to be limited when no holistic
information is used. We believe the reason for this setting is that global processing
path of our model affects the learning of the local processing path due to end-to-end
learning procedure designed for the proposed architecture. The combined holistic
and global features are passed through another series of fully connected layers
where the final layer is softmax layer upon which a loss is defined during training.
The softmax classification layer can also be used during run-time for closed-set
recognition experiments.

3.3 Model Training

To train the COM-Ear model, we design an end-to-end learning procedure and a
combined training objective, defined as follows:

Ltotal = LS +λLC, (1)

where LS denotes the cross-entropy loss defined on the softmax COM-Ear layer, LC
stands for the center loss defined on features that represent inputs to the first fully
connected layer, and λ represents a hyper parameter that balances the two losses.
The motivation behind the center loss is to enhance the discriminative power of the
learned features. The cross-entropy loss forces the deep features of different classes
to be separable, while the center loss efficiently pulls the deep features closer to
their corresponding centers (learned on mini batches). In this way inter-class feature
differences are enlarged and intra-class feature variations are reduced effectively
making features more discriminative. Our preliminary experiments during the design
phase suggested that the inclusion of the center loss is highly important as the results
without center loss were significantly less convincing.

3.4 Implementation Details

We implement our model using PyTorch and use built-in implementations of ResNet
(ResNet-18, ResNet-50, ResNet-152) models as the backbone CNN-based feature
extractor. All backbone models are used with pretrained weight on the ImageNet
dataset. We modify the models in order to accept arbitrary sized input images and
replace all average pooling layers with adaptive average pooling operations. The
outputs of the adaptive average pooling layers are used as features in both the global
as well as local processing paths.

As described above, local features from the patches are aggregated with the
proposed PRI-pooling operation, which is implemented as an element-wise maximum
over patch dimension. Both, the aggregated local feature and the global holistic
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features are of the same dimension (512 for ResNet-18 and 2048 for ResNet-50 and
ResNet-152) and are combined using a simple concatenation operation. Concatenated
inputs are transformed via the fully connected layer of the same output dimension
as the input (e.g. 512 for ResNet-18) and this represents the input to the final fully
connected softmax layer.

4 Experiments and Results

In this section we describe the experiments performed to highlight the main character-
istics of the proposed COM-Ear model. Since our focus is the ability of the proposed
model to perform well in unconstrained environments we used Extended Annotated
Web Ears (AWEx) for our experiments. However, the dataset contains a limited num-
ber of images. Based on our previous experience and findings [27] we used severe
data augmentation to stimulate training and to prevent overfitting. The AWEx is then
used to train and evaluate different variations of the model – reduced patch size and
omission of center loss. We compare our model directly to some of the state-of-the-art
approaches. Furthermore, to evaluate the performance of our proposed COM-Ear
model as well as possible, we also present a comparison with the deep-learning
approaches submitted to the 2017 Unconstrained Ear Competition Challenge [28]
- a recent group-benchmarking effort of ear recognition technology applied to data
captured in unconstrained conditions. Additionally, we also evaluate the robustness
of our model in regard to one of the most problematic aspects of ear recognition –
occlusions. For this part of our analysis we generate a synthetic dataset with arti-
ficial ear accessories superimposed over ear images. Lastly we present a in depth
qualitative analysis, where we first visualize the impact of the proposed patch-based
processing by analyzing performance of separate parts and then visually compare
ranking performance of the proposed model vs the performance of the deep-learning
approaches from the 2017 Unconstrained Ear Recognition Challenge [28].

4.1 Experimental Datasets

We conduct experiments on the Extended Annotated Web Ears (AWEx) dataset,
which represents one of the largest datasets of unconstrained ear images available.
Images from the dataset were gathered from the web and therefore exhibit a signifi-
cant level of variability due to differences in head rotations, illumination, age, gender,
race, occlusion and other factors. A few example images intended to highlight the
difficulty of the dataset are presented in Fig. 2. The ear images in the dataset are
tightly cropped and are not normalized in size. A total of 336 subjects and 4004
images is available in the AWEx dataset and is used in our experiments.

We use the dataset in identification experiments and follow various experimental
protocols to be able to compare our model with published results from the literature.
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Fig. 2: Sample images from the AWEx dataset. As can be seen, the images exhibit a
wide range of appearance variability due to different resolution, ethnicity, varying
levels of occlusion, presence/absence of accessories, head rotations and other similar
factors.

These protocols include two evaluation protocols from UERC 2017 [28] which allows
for a direct comparison with approaches from the challenge.

4.2 Performance Metrics

As already indicated above, we perform identification experiments to evaluate the
COM-Ear model and compare it to existing approaches. Identification aims at pre-
dicting the identity of the given ear image, as opposed to verification experiments
where the prediction is binary – whether the observed ear-image belongs to a given
subject or not.

To measure performance in our experiments, we report the following performance
metrics, wherever possible:

• The rank one recognition (rank-1): is the percentage of probe images, for which
an image of the correct identity was retrieved from the gallery as the top match.
If there are multiple images per class available in the gallery, the most similar
image is selected and used for the rank calculation.

• The rank five recognition (rank-5): is the percentage of probe images, for which
an image of the correct identity was among the top five matches retrieved from
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the gallery. Same, as for rank-1, if there are multiple images per class in the
gallery, the most similar sample is considered. This procedure applies for all the
rank calculations.

• The Area under the CMC curve (AUC): is the normalized area under the Cumu-
lative Match Score Curve (CMC), which is similar to the standard AUC measure
typically computed for Receiver Operating Characteristic (ROC) curves. This
metric measures the overall performance of the tested recognition model and is
commonly used in identification experiments [28].

These identification metrics are widely used in literature and have, therefore also
been selected for this work. For all described performance metrics a higher value
means better performance. The rank values range from 0 to the number of classes
present in the test set, whereas for the AUC score, values range between 0 and 1 and
denote the fraction of the surface area under the CMC curve. For a more in-depth
explanation of the metrics used in the experiments, we refer readers to [38].

4.3 Training Details

We train the COM-Ear model using images from the AWEx dataset. For the training
procedure we use the training objective in (1) with a value of λ = 0.003, as used in
original paper [70], to balance the impact of the cross-entropy and center losses. We
set the learning rate to 0.01 for the cross-entropy loss and to 0.5 for center loss. We
train the model for 100 epochs with stochastic gradient descent (SGD) and a step size
of 50, decay rate of 0.1 and a batch size of 32 input images and their corresponding
patches. We sample patches from the input images in a grid-like fashion with overlap2.
A summary of the hyper-parameters used during training is given in Table 1.

Table 1: Hyper-parameters used during training.

number of epochs 100
weight decay 0
learning rate for loss function 0.01 (0.9 momentum)
learning rate for center loss 0.5
λ (as defined above) 0.003

To avoid overfitting, we perform data augmentation to increase the variability of
the data. The importance of data augmentation in the ear recognition domain was first
mentioned in [27]. However, compared to [27] we used online augmentations (i.e.
augmenting the data on the fly) so that the network almost never sees the exact same
image multiple times in order to improve generalization performance.We perform

2 Note that we study the influence of the size of the patches in the experimental section
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data augmentation with the Imgaug 3 Python library and use the following image
transformations:

• horizontal flipping,
• blurring with Gaussian filters with σ in the range (0, 0.5),
• scaling by a factor in the range (0.9, 1.2), and
• rotation in the range ±30◦.

All listed operations are performed in random order and each operation is applied
with 50% chance. With this setting we leave the chance that there could be no
augmentations applied at all - albeit with a very low probability. The images are also
normalized with per channel mean and standard deviation values from ImageNet [21]
as is general practice.

Image patches are cropped after performing augmentations on the image so that
both the image and patches are transformed in the same way. With this we ensure
that holistic and local models are looking at the same input.

4.4 Ablation Study

In our first series of experiments we investigate the impact of some of our design
choices when developing the COM-Ear model. For this ablation study we, therefore,
focus on separate parts of the proposed COM-Ear model and observe how specific
design choices affect the performance of our model. For this experiment we follow
the experimental protocol from [25] and split the available data from the AWEx
dataset into two, subject disjoint sets, i.e.:

• A training set comprising 1804 images of 116 subjects. These images are used
to learn the parameters of the COM-Ear model (and it’s variants) and monitor
training progress via a validation set during the learning procedure.

• A testing set comprising 2200 images of 220 subjects intended for final perfor-
mance evaluation. Images from the set are used to compute performance metrics
and report results.

To allow for open-set identification experiments, we perform network surgery on the
COM-Ear model and use the 2d-dimensional concatenated global and local features
as the descriptor for the given input ear image. To measure similarity between ear
descriptors we compute cosine similarities. For the experiments, we use an initial
image size of 224× 224 pixels and a patch size of 112× 112 pixels. Patches are
sampled with a 50% overlap resulting in a total of 9 patches for the local processing
path of COM-Ear.

Using the above protocol, we first explore the performance of the backbone
ResNet feature extractors and compare the performance of different ResNet variants,
i.e., ResNet-18, ResNet-50 and ResNet-152. We train all models on our training data

3 https://github.com/aleju/imgaug
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using the same loss as for the COM-Ear model (see Eq. (1)) and use features from
the penultimate model layer with the cosine similarity for recognition. The results in
Table 2 show no significant difference in the performance of the backbone models.
We, therefore, select ResNet-18 as the final backbone model for COM-Ear due to it’s
light-weight architecture compared to the other two ResNet variants.

Next, we report results for the COM-Ear model obtained with and without the use
of center-loss. We observe that the performance of COM-Ear drops by a larger margin
when no center-loss is used, which points to the importance of the combined loss
during training. Additionally, when looking at the performance difference between
the backbone ResNet-18 model and COM-Ear, we see that the addition of the
local processing path significantly improves performance, as the rank-1 recognition
improved from 26.1% (for ResNet-18) to 31.1% (for COM-Ear).

Finally, we report results for COM-Ear using smaller patches of size 56×56 pixels
– patches are still sampled from the input image with a 50% overlap. In comparison
with the initial patch size of 112×112 pixels sampled with a 50% overlap results are
worse. These results suggest that patches need to be of a sufficient size in order to
carry enough context to be informative. Smaller patches can also carry background
information which is not beneficial for recognition purposes and may also introduce
ambiguities among different subjects. Examples of 112× 112 pixel input patches
with 50% overlap can be viewed in Fig. 1.

Table 2: Ablation study for the COM-Ear Model.

Method Rank-1 [%] Rank-5 [%] AUCMC [%]
ResNet-18 26.1 52.2 92.7
ResNet-50 26.1 50.8 92.6
ResNet-152 26.1 49.9 92.4
COM-Ear 31.1 54.6 93.2
COM-Ear [no center loss] 27.1 52.5 92.6
COM-Ear [patch size / 2] 29.4 52.1 91.6

4.5 Performance Evaluation against the State-of-the-art

In our next series of experiments we benchmark the COM-Ear model against state-
of-the-art models from the literature. We conduct two types of experiments to match
the experimental protocols most often used by other researchers.



16 Dejan Štepec, Žiga Emeršič∗, Peter Peer, Vitomir Štruc

Table 3: Comparative evaluation of the COM-Ear Model.

Method Rank-1 [%] Rank-5 [%] AUCMC [%]
ResNet-18 [35] 24.5 48.5 91.4
ResNet-50 [35] 25.9 49.9 92.0
ResNet-152 [35] 26.1 52.8 92.6
MobileNet ( 1

4 ) [36] 17.1 36.1 88.0
MobileNet ( 1

2 ) [36] 16.0 38.5 88.5
MobileNet (1) [36] 26.9 50.0 91.8
LBP [49] 17.8 32.2 79.6
HOG [19] 23.1 41.6 87.9
DSIFT [44] 15.2 29.9 77.5
BSIF [40] 21.4 35.5 81.6
LPQ [50] 18.8 34.1 81.0
RILPQ [51] 17.9 31.4 79.8
POEM [69] 19.8 35.6 81.5
COM-Ear 31.5 55.9 93.3

4.5.1 Comparison with Competing Methods

In the first experiment of this series we use the same protocol as during the ablation
study. This protocol is taken from [25] and we report results from this publication
for comparison purposes. Specifically, we include results for dense-descriptor-based
methods relying on Local Binary Patterns (LBPs [10, 29, 33, 56, 57]), (Rotation
Invariant) Local Phase Quantization Features (RILPQ and LPQ [50, 51]), Binarized
Statistical Image Features (BSIF [29, 40, 56]), Histograms of Oriented Gradients
(HOG, [19, 20, 29, 56]), the Dense Scale Invariant Feature Transform (DSIFT, [22,
29, 42]) and Patterns of Oriented Edge Magnitudes (POEM, [29, 69]). For deep
learning based models, we report results for ResNet-18, ResNet-50 and ResNet-152
(taken from [25]). Additionally, we provide results for the MobileNet model, which
represent a light-weight CNN architecture, developed with mobile and embedded
vision applications in mind. The architecture uses two main hyperparameters that
efficiently trade off between latency and accuracy [36]. These hyper-parameters
allow to tweak the size of the model in accordance with the problem domain and
use-case scenarios. In this work we evaluate three such versions with different width
multipliers. The lower the value the more lightweight the model, the higher the value
(highest, being 1) the heavier the footprint. In Table 3 we report results for three
levels of multipliers: 1

4 , 1
2 and 1 [36].

The results of this experiment are presented in Table 3 and Fig. 3. We observe that
COM-Ear achieves the best overall results, improving upon the state-of-the-art by a
large margin. With a rank one recognition rate of 31.05% it significantly outperforms
all traditional feature extraction methods as well as all tested deep learning based
models. The closest competitor is MobileNet (1) with a rank one recognition rate
of 26.9%. Descriptor-based methods are less convincing with the best performing
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Fig. 3: CMC curves of the comparative evaluation of the COM-Ear Model. The results
are presented in logarithmic scale to better visualize the performance differences at
the lower ranks, which are more important from an application point of view. The
figure is best viewed in color.

method from this group achieving a rank-1 recognition rate of 23.1%, 8% less (in
aboslute terms) than the proposed COM-Ear model.

4.5.2 Comparison With Results From the 2017 Unconstrained Ear
Recognition Challenge (UERC)

In the next experiments we compare COM-Ear on the data and experimental protocol
used in the 2017 Unconstrained Ear Recognition Challenge (UERC 2017). UERC
2017 was organized as a group benchmarking effort in the scope of the 2017 Inter-
national Joint Conference on Biometrics (IJCB 2017) and focused on accessing ear
recognition technology in unconstrained settings. The challenge was conducted in
part on the AWEx dataset using a slightly different protocol as used in the previous
section. The reader is referred to [28] for details on the protocol. Several groups
participated in the challenge and submitted results. Here, we include results for all
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Table 4: Summary of deep learning based approaches from UERC 2017 included in
the comparison. The table provides a short description of each approach, information
on whether ear alignment and flipping was performed and the model size (if any).
See [28] for details.

Approach Description Descriptor type Alignment Flipping
IAU VGG network (trained on Ima-

geNet) and transfer learning
Learned No No

ICL Deformable model and Inception-
ResNet

Learned Yes Yes

IITK VGG network (trained on the VGG
face dataset)

Learned No Yes

ITU I VGG network (trained on Ima-
geNet) and transfer learning

Learned No Yes

ITU II Ensemble method (LBP + VGG-
network)

Learned + Hand-crafted No Yes

LBP-baseline Descriptor-based (uniform LBPs) Hand-crafted No No
VGG-baseline VGG network trained solely on the

UERC training data
Learned No No

deep-learning-based methods from UERC 2017 - briefly summarized in Table 4 -
and for the three ResNet variants also tested in the previous sections.

Table 5: Comparison with results from the Unconstrained Ear Recognition Challenge
(UERC) [28]. The results were generated on the testing split of the AWEx dataset.

Method Rank-1 [%] Rank-5 [%] AUCMC [%]
ICL [28] 5.3 14.8 71.17
IAU [28] 38.5 63.2 94.0
IITK [28] 22.7 43.6 86.1
ITU-I [28] 24.0 46.0 89.0
ITU-II [28] 27.3 48.3 87.7
LBP-baseline [28] 14.3 28.6 75.9
VGG-baseline [28] 18.8 37.5 86.6
ResNet-18 28.0 57.1 93.0
ResNet-50 22.1 46.8 90.5
ResNet-152 15.9 40.7 88.8
COM-Ear 41.8 67.7 94.7

The results of the comparison are presented in Table 5 and Fig. 4. Similarly to
the results from Table 3 we observe that among the ResNet models, ResNet-18
performs the best (rank-1 = 28%). The overall top performer is again COM-Ear,
which achieves state-of-the-art results, improving upon the best results included in
the comparison (IAU) by more than 3% in terms of rank-1 and more than 5% rank-5
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Fig. 4: CMC curves of the direct comparison to the UERC 2017 [28] recognition
results. The results were generated on the testing split of the AWEx dataset and are
shown in linear scale.

recognition results. The best performing entry from Islamic Azad University (IAU)
in UERC 2017 was built around a VGG-16 architecture [63] and transfer learning.
The idea of the IAU approach was to leave part of the pretrained VGG-16 model as is
(i.e., with frozen weights), while retraining other parts of the model that are relavant
for transfering to the new domain, i.e. ear recognition. Specifically, the authors added
two fully-connected layers on top of the 7th layer of the pretrained VGG model.
Only the newly added FC layers were trained on the UERC data. Learning only
certain layers while leaving other layers untouched (e.g.. learned only on ImageNet)
is beneficial especially in the case of smaller datasets like the one used for UERC
2017, as it prevents overfitting and thus results in features that generalize better to
the new task. In our case we used center loss to make the learned features more
discriminative and learn a descriptive model using limited training data.

In the next experiment, we evaluate how the proposed COM-Ear model scales
with larger probe and gallery sets. For this experiments we use the scale experimental
protocol employed for the scale experiments in UERC 2017. The results of this test
are shown in the form of CMC curves in Fig. 5. The curves were generated using
7,442 probe images belonging to 1,482 subjects and 9,500 gallery images of 3,540



20 Dejan Štepec, Žiga Emeršič∗, Peter Peer, Vitomir Štruc

10 0 10 1 10 2 10 3

Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y 
R

at
e

COM-Ear
ICL
IAU
IITK
ITU-I
ITU-II
VGG-Base
LBP-Base

Fig. 5: CMC curves of the comparison to the UERC 2017 [28] recognition results.
The results were generated on the complete test dataset of UERC containing all 3,540
subjects of the AWEx dataset and multiple distractor identities. The results are again
shown in logarithmic scale to highlight the performance differences at the lower
ranks. The figure is best viewed in color.

subjects. The gallery also contained identities that were not in the probe set. These
samples act as distractors for the recognition techniques [28, 41]. The numerical
results in Table 6 show that the proposed model perform comparable to the ITU-II
approach in terms of rank-1 and rank-5 recognition rates and is very competitive
even when a large number of distractor samples are introduced to the experiments.
It also needs to be noted that the ITU-II technique combined two complementary
CNN models and hand-crafted features to achieve this performance, COM-Ear, on
the other hand, is a coherent model that relies on the same feature representation but
considers aggregates global and local information about the appearance of the ears
for identitiy inference.
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Table 6: Comparison with results from the 2017 Unconstrained Ear Recognition
Challenge (UERC) [28]. The results were generated on the complete test dataset
containing all 3,540 subjects of the UERC dataset.

Method Rank-1 [%] Rank-5 [%] AUCMC [%]
ICL [28] 0.9 2.8 73.8
IAU [28] 16.2 28.3 90.5
IITK [28] 6.7 11.8 77.5
ITU-I [28] 14.6 28.1 93.6
ITU-II [28] 17.0 29.4 91.9
LBP-Base [28] 8.7 16.7 84.3
VGG-Base [28] 9.7 19.3 88.3
COM-Ear 16.8 30.0 90.2

4.6 Robustness to Occlusions

In our last experiment we evaluate the robustness of our model to occlusions of
the ear. We use the same protocol as during the ablation study and run two types
of experiments: with and without occlusions. The experiments without occlusions
are equivalent to the experiments already presented above. For the experiments
with occlusions we simulate the presence of ear accessories and place images of
accessories on random places over the cropped ear images. The added accessories are
of different shapes and color and simulate a broad spectrum of real-world accessories.
Some of the generated images are presented in Fig. 6. As we can see, the accessories
mostly cover a smal area of the image, but may be as big as 20% of the image area.

Results for this series of experiments are presented in Table 7 for the COM-Ear
model as well as the baseline ResNet-18 model. We see that both models deteriorate
in performance, but the degradation is worse for ResNet-18. These results suggest
that the local processing path that encodes local image details is indeed beneficial
and contributes not only to state-of-the-art performance on unconstrained ear images,
but also improves robustness when accessories are present in ear images.

Table 7: Results with accessory-based presentation attack. The upper values show
baseline values without the attack, and the values below the delimiting line show the
results when attacked with earring images.

Experiment Method Rank-1 [%]

Without occlusions ResNet-18 24.5
COM-Ear 31.1

With occlusions ResNet-18 16.1
COM-Ear 22.3
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Fig. 6: Example of some of the inputs with added computer generated accessories.
The ear accessories were generated in different shapes, positions and with varying
sizes.

4.7 Qualitative Evaluation

In this section we show some qualitative results related to the COM-Ear modeland
also with regard to approaches from UERC 2017. As discussed earlier, COM-Ear
aggregates local features with the proposed PRI-pooling operation, which takes a
maximum over the patch dimension to produce the 512-dimensional feature vector
(in the case of a ResNet-18 backend) from the set of local feature vectors extracted
from the image patches. The COM-Ear model allows us to determine, which patch is
represented in what proportion in the aggregated (local) feature vector if we examine
where each value of the aggregated feature vector came from (i.e. argmax operation).

We show some example ear images from the AWEx dataset and their correspond-
ing image patches in Fig. 7. Here, the fraction of features each patch contributes into
the aggregated feature vector is shown below the patches.

The examples in Fig. 7(a), Fig. 7(b) and Fig. 7(c) represent the same subject with
images captured in different conditions and ears in slightly different positions. We
can see that similar image features are considered important for all three examples
and that the importance of all patches are very similar. Especially important seems to
be the bottom-left patch which has a distinct ear shape.

The images in Fig. 7(d) and Fig. 7(e) represent input samples with earrings. We
can see that patches with earrings are not weighted heavily as one might expect.
This is because the training set contains data with and without earings, so the model
can learn that earrings are not necessarily important - this may also be one of the
reasons why COM-Ear is much more robust with to the presence of accessories than
ReNet-18.

The examples in Fig. 7(f) and Fig. 7(g) show images with large occlusions and
presence of earrings which makes it difficult to perform recognition, as many distinct
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Fig. 7: Example of input patches and their importance in the aggregated feature
vector of the local processing path of the COM-Ear model.
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feature are not clearly visible. In the example Fig. 7(f) we see that the top-left patch
is the most important as there is almost no occlusion. Similarly for the Fig. 7(g)
where the upper sections of the ear are completely occluded, the patch that has no
occlusions is chosen to be the most discriminative. Patches with occlusions such
as hair are down-weighted as hair is highly variable and the model learns this fact
during training.

Fig. 7(h) has no occlusions or accessories but the image is captured in low light
conditions and at an difficult angle. The distribution of the importance of the patches
is, therefore, much more equal as there are more relevant features present along the
whole ear area and one does not dominate.

In order to compare the proposed COM-Ear to others qualitatively, we show what
type of images the model and the deep learning approaches from UERC 2017 retrieve
from the gallery as the first (rank-1) and as the second match (rank-2) for a given
probe images. We also show the first correct prediction (note that there are multiple
images of the correct subject in the gallery) and provide the rank, at which it was
retrieved. The first correct prediction is considered to be the image that is closest
in the ranking and has the same identity as the probe image. For this experiment
we again use the entire UERC test data with 9,500 images in the gallery set. The
described qualitative analysis is shown in Figure 8 for five randomly selected probe
images - shown on the left.

With the top performing approaches, the images retrieved at rank 1 and 2 exhibit
a high visual similarity to the probes, as expected. Thus, even when predictions fail,
the closest matches visually resemble the probe image. However, with the second,
fourth and fifth probe image all 5 evaluated techniques fail. For the fifth probe image
the low-resolution of the probe is likely the reason for the failure. The fourth probe
image contains high contrast illumination that could be the cause of the error. In
the second example (the second probe), the image looks fairly easy to recognize,
since illumination is good, the ear is well visible and there are no ear accessories.
However, we assume that the cause for the bad performance in this case could be
attributed to the fact that there are many images form other subjects in the dataset
that look similar. The visual similarity of images found as the closest matches seems
to confirm this observation.

5 Conclusion

In this chapter we introduced the first deep constellation model for ear recognition,
termed COM-Ear. We evaluated the model in extensive experiments on the Extended
Annotated Web Ears (AWEx) dataset and improved upon state-of-the-art results
by a large margin. We showed that with the COM-Ear constellation model we
not only achieve state-of-the-art results, but also contribute towards more stable
recognition performance in challenging setting when parts of the ears are occluded
or ear accessories are present in the images. The design of the COM-model and the
novel pooling procedure, proposed in this chapter allowed us to visualize certain
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Fig. 8: Qualitative analysis with selected probe images. The figure shows selected
probe images (on the left) and the first and second match generated by the evaluated
approaches. The first retrieved image with the correct identity is also shown together
with the corresponding rank, at which it was retrieved.
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aspect of the learned ear representations and resulted in a level of interpretability not
seen with competing models. With reversing the the aggregation operation (i.e. the
proposed PRI-pooling) we were able to obtain patch level importance which presents
an additional novelty of our proposed model. This has important implications for
future research a similar concepts could be integrated into other models and offer to
better understand the inner workings of deep learning based methods.
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28 Dejan Štepec, Žiga Emeršič∗, Peter Peer, Vitomir Štruc

11. Burge, M., Burger, W.: Ear biometrics. In: Jain, A.K., Bolle, R., Pankanti, S. (eds.) Biometrics,
chap. Ear Biometrics, pp. 273–285. IEEE (1996)

12. Bustard, J.D., Nixon, M.S.: Toward unconstrained ear recognition from two-dimensional
images. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans
40(3), 486–494 (2010)

13. Chan, T.S., Kumar, A.: Reliable ear identification using 2-D quadrature filters. Pattern Recogni-
tion Letters 33(14), 1870–1881 (2012)

14. Chang, K., Bowyer, K.W., Sarkar, S., Victor, B.: Comparison and combination of ear and face
images in appearance-based biometrics. IEEE Transactions on Pattern Analysis and Machine
Intelligence 25(9), 1160–1165 (2003)
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27. Emeršič, Ž., Štepec, D., Štruc, V., Peer, P.: Training Convolutional Neural Networks with
Limited Training Data for Ear Recognition in the Wild. In: International Conference on
Automatic Face and Gesture Recognition – Workshop on Biometrics in the Wild. pp. 987–994.
IEEE, IEEE (2017)
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